Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
BMC Plant Biol ; 24(1): 172, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443837

RESUMO

BACKGROUND: Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Pathogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabidopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modification pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. RESULTS: A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. CONCLUSIONS: A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A subset of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vírus de Plantas , Viroses , Metilação de DNA , Arabidopsis/genética , Histona Desacetilases , Histona Desmetilases com o Domínio Jumonji
2.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38440329

RESUMO

In the quantitative description of viral dynamics within cell cultures and, more broadly, in modeling within-host viral infections, a question that commonly arises is whether the degradation of a fraction of the virus could be disregarded in comparison with the massive synthesis of new viral particles. Surprisingly, quantitative data on the synthesis and degradation rates of RNA viruses in cell cultures are scarce. In this study, we investigated the decay of the human betacoronavirus OC43 (HCoV-OC43) infectivity in cell culture lysates and in fresh media. Our findings revealed a significantly slower viral decay rate in the medium containing lysate cells compared to the fresh medium. This observation suggests that the presence of cellular debris from lysed cells may offer protection or stabilize virions, slowing down their degradation. Moreover, the growth rate of HCoV-OC43 infectivity is significantly higher than degradation as long as there are productive cells in the medium, suggesting that, as a first approximation, degradation can be neglected during early infection.

3.
J Biol Chem ; 300(5): 107218, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522515

RESUMO

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.

4.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240739

RESUMO

Plant viruses account for enormous agricultural losses worldwide, and the most effective way to combat them is to identify genetic material conferring plant resistance to these pathogens. Aiming to identify genetic associations with responses to infection, we screened a large panel of Arabidopsis thaliana natural inbred lines for four disease-related traits caused by infection by A. thaliana-naïve and -adapted isolates of the natural pathogen turnip mosaic virus (TuMV). We detected a strong, replicable association in a 1.5 Mb region on chromosome 2 with a 10-fold increase in relative risk of systemic necrosis. The region contains several plausible causal genes as well as abundant structural variation, including an insertion of a Copia transposon into a Toll/interleukin receptor (TIR-NBS-LRR) coding for a gene involved in defense, that could be either a driver or a consequence of the disease-resistance locus. When inoculated with TuMV, loss-of-function mutant plants of this gene exhibited different symptoms than wild-type plants. The direction and severity of symptom differences depended on the adaptation history of the virus. This increase in symptom severity was specific for infections with the adapted isolate. Necrosis-associated alleles are found worldwide, and their distribution is consistent with a trade-off between resistance during viral outbreaks and a cost of resistance otherwise, leading to negative frequency-dependent selection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Humanos , Arabidopsis/genética , Potyvirus/genética , Proteínas de Arabidopsis/genética , Necrose , Doenças das Plantas/genética
5.
Evolution ; 78(1): 69-85, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37891007

RESUMO

In this study, we investigated how an emerging RNA virus evolves, interacts, and adapts to populations of a novel host species with defects in epigenetically controlled plant defense mechanisms. Mutations in epigenetic regulatory pathways would exert different effects on defense-response genes but also induce large-scale alterations in cellular physiology and homeostasis. To test whether these effects condition the emergence and subsequent adaptation of a viral pathogen, we have evolved five independent lineages of a naive turnip mosaic virus (TuMV) strain in a set of Arabidopsis thaliana genotypes carrying mutations that influence important elements of two main epigenetic pathways and compare the results with those obtained for viral lineages evolved in wild-type plants. All evolved lineages showed adaptation to the lack of epigenetically regulated responses through significant increases in infectivity, virulence, and viral load although the magnitude of the improvements strongly depended on the plant genotype. In early passages, these traits evolved more rapidly, but the rate of evolution flattened out in later ones. Viral load was positively correlated with different measures of virulence, though the strength of the associations changed from the ancestral to the evolved viruses. High-throughput sequencing was used to evaluate the viral diversity of each lineage, as well as characterizing the nature of fixed mutations, evolutionary convergences, and potential targets of TuMV adaptation. Within each lineage, we observed a net increase in genome-wide genetic diversity, with some instances where nonsynonymous alleles experienced a transient rise in abundance before being displaced by the ancestral allele. In agreement with previous studies, viral VPg protein has been shown as a key player in the adaptation process, even though no obvious association between fixed alleles and host genotype was found.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno/genética , Potyvirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genômica , Epigênese Genética , Doenças das Plantas/genética
7.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38021168

RESUMO

This study examines the specificity of adaptation of lineages of turnip mosaic virus that were experimentally evolved from naïve and preadapted strains to Arabidopsis thaliana plants at various plant developmental stages. We conducted a cross-infection experiment involving three plant developmental stages and assessed the progression of disease and symptoms. We found a significative interaction between the host developmental stage where the virus evolved and the host developmental stage in which the virus was tested. The analysis of the resulting interaction matrices revealed significant nestedness for viruses evolved from the naïve strain, but not for those originating from the preadapted one. Furthermore, there was an absence of modularity across all matrices. Our findings suggest that the past adaptation history of the ancestral strain influences its future evolution, and each plant developmental stage imposes unique selective constraints. The study highlights the complexity of host-parasite interactions and the potential influence of the host's developmental stage on viral adaptation.

8.
Viruses ; 15(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896809

RESUMO

The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.


Assuntos
Bacteriófagos , Vírus de RNA , Viroses , Vírus , Humanos , Biologia Computacional , Vírus/genética
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220005, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744567

RESUMO

Viruses are obligate pathogens that entirely rely on their hosts to complete their infectious cycle. The outcome of viral infections depends on the status of the host. Host developmental stage is an important but sometimes overlooked factor impacting host-virus interactions. This impact is especially relevant in a context where climate change and human activities are altering plant development. To better understand how different host developmental stages shape virus evolution, we experimentally evolved turnip mosaic virus (TuMV) on Arabidopsis thaliana at three different developmental stages: vegetative (juvenile), bolting (transition) and reproductive (mature). After infecting plants with an Arabidopsis-naive or an Arabidopsis-well-adapted TuMV isolate, we observed that hosts in later developmental stages were prone to faster and more severe infections. This observation was extended to viruses belonging to different genera. Thereafter, we experimentally evolved lineages of the naive and the well-adapted TuMV isolates in plants from each of the three developmental stages. All evolved viruses enhanced their infection traits, but this increase was more intense in viruses evolved in younger hosts. The genomic changes of the evolved viral lineages revealed mutation patterns that strongly depended on the founder viral isolate as well as on the developmental stage of the host wherein the lineages were evolved. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Assuntos
Arabidopsis , Vírus de Plantas , Potyvirus , Humanos , Arabidopsis/genética , RNA de Plantas , Potyvirus/genética , Vírus de Plantas/genética , Doenças das Plantas
11.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780432

RESUMO

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenômica , Filogenia , Vírus/genética
12.
Curr Top Microbiol Immunol ; 439: 167-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592246

RESUMO

Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.


Assuntos
Vírus de Plantas , Viroses , Humanos , Ecossistema , Vírus de Plantas/genética , Adaptação Fisiológica , Mutação
13.
Commun Biol ; 6(1): 28, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631662

RESUMO

Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.


Assuntos
Arabidopsis , Potyvirus , Arabidopsis/genética , Interações Hospedeiro-Patógeno/genética , Potyvirus/genética , Proteoma
14.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399124

RESUMO

Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.


Assuntos
Flexiviridae , Vírus , Flexiviridae/genética , Genoma Viral , Vírus/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
15.
Commun Biol ; 5(1): 1302, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435849

RESUMO

Single-cell RNA sequencing (scRNA-seq) is currently one of the most powerful techniques available to study the transcriptional response of thousands of cells to an external perturbation. Here, we perform a pseudotime analysis of SARS-CoV-2 infection using publicly available scRNA-seq data from human bronchial epithelial cells and colon and ileum organoids. Our results reveal that, for most genes, the transcriptional response to SARS-CoV-2 infection follows a non-linear pattern characterized by an initial and a final down-regulatory phase separated by an intermediate up-regulatory stage. A correlation analysis of transcriptional profiles suggests a common mechanism regulating the mRNA levels of most genes. Interestingly, genes encoded in the mitochondria or involved in translation exhibited distinct pseudotime profiles. To explain our results, we propose a simple model where nuclear export inhibition of nsp1-sensitive transcripts will be sufficient to explain the transcriptional shutdown of SARS-CoV-2 infected cells.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Análise de Dados , SARS-CoV-2/genética , RNA Mensageiro/genética , Células Epiteliais
16.
J Virol ; 96(22): e0098822, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314818

RESUMO

Although the coat protein (CP) has a relevant role in the long-distance movement of alfalfa mosaic virus (AMV) and brome mosaic virus (BMV), its precise function is not fully understood. Previous results showed that a specific interaction between the C termini of the movement protein (MP) and the cognate CP is required for systemic transport. Thus, we have performed a compensatory evolution experiment using an AMV RNA3 derivative defective in long-distance transport that carries a BMV MP lacking the C-terminal 48 residues and unable to interact with the AMV CP. After several passages, five independent evolution lineages were able to move long distance. The analysis of the viral RNA of these lineages showed the presence of three different modifications located exclusively at the 5' untranslated region (5' UTR). The three evolved 5' UTR variants accumulated comparable levels of viral RNA and CP but reduced the accumulation of virus particles and the affinity between the 5' UTR and the AMV CP. In addition, the evolved 5' UTR increased cell-to-cell transport for both the AMV RNA3 carrying the BMV MP and that carrying the AMV MP. Finally, the evolved 5' UTRs allowed the systemic transport of an AMV RNA3 carrying a CP mutant defective in virus particles and increased the systemic transport of several AMV RNA3 derivatives carrying different viral MPs associated with the 30K superfamily. Altogether, our findings indicate that virus particles are not required for the systemic transport of AMV but also that BMV MP is competent for the short- and long-distance transport without the interaction with the CP. IMPORTANCE The results obtained in the present work could challenge the view of the role of the virus particle in the systemic transport of plant viruses. In this sense, we show that two different MPs are competent to systemically transport the AMV genome without the requirement of the virus particles, as reported for viruses lacking a CP (e.g., Umbravirus). The incapability of the viral MP to interact with the CP triggered virus variants that evolved to reduce the formation of virus particles, probably to increase the accessibility of the MP to the viral progeny. Our results point to the idea that virus particles would not be necessary for the viral systemic transport but would be necessary for vector virus transmission. This idea is reinforced by the observation that heterologous MPs also increased the systemic transport of the AMV constructs that have reduced encapsidation capabilities.


Assuntos
Vírus do Mosaico da Alfafa , Bromovirus , Proteínas do Movimento Viral em Plantas , Transporte de RNA , Regiões 5' não Traduzidas , Vírus do Mosaico da Alfafa/genética , Bromovirus/genética , RNA Viral/genética , Proteínas do Movimento Viral em Plantas/genética
17.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012656

RESUMO

Viral satellite RNAs (satRNAs) are small subviral particles that are associated with the genomic RNA of a helper virus (HV). Their replication, encapsidation, and movement depend on the HV. In this paper, we performed a global analysis of the satRNAs associated with different isolates of tomato black ring virus (TBRV). We checked the presence of satRNAs in 42 samples infected with TBRV, performed recombination and genetic diversity analyses, and examined the selective pressure affecting the satRNAs population. We identified 18 satRNAs in total that differed in length and the presence of point mutations. Moreover, we observed a strong effect of selection operating upon the satRNA population. We also constructed infectious cDNA clones of satRNA and examined the viral load of different TBRV isolates in the presence and absence of satRNAs, as well as the accumulation of satRNA molecules on infected plants. Our data provide evidence that the presence of satRNAs significantly affects viral load; however, the magnitude of this effect differs among viral isolates and plant hosts. We also showed a positive correlation between the number of viral genomic RNAs (gRNAs) and satRNAs for two analysed TBRV isolates.


Assuntos
RNA Satélite , RNA Viral , Variação Genética , Vírus Auxiliares/genética , Nepovirus , Doenças das Plantas/genética , Plantas/genética , RNA Satélite/genética , RNA Viral/genética , Replicação Viral/genética
18.
Virus Evol ; 8(2): veac059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821716

RESUMO

It is assumed that host genetic variability for susceptibility to infection conditions virus evolution. Differences in host susceptibility can drive a virus to diversify into strains that track different defense alleles (e.g. antigenic diversity) or to infect only the most susceptible genotypes. Here, we have studied how variability in host defenses determines the evolutionary fate of a plant RNA virus. We performed evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants that had disruptions in infection-response signaling pathways or in genes whose products are essential for potyvirus infection. Plant genotypes were classified into five phenogroups according to their response to infection. We found that evolution proceeded faster in more restrictive hosts than in more permissive ones. Most of the phenotypic differences shown by the ancestral virus across host genotypes were removed after evolution, suggesting the combined action of selection and chance. When all evolved viral lineages were tested in all plant genotypes used in the experiments, we found compelling evidences that the most restrictive plant genotypes selected for more generalist viruses, while more permissive genotypes selected for more specialist viruses. Sequencing the genomes of the evolved viral lineages, we found that selection targeted the multifunctional genome-linked protein VPg in most host genotypes. Overall, this work illustrates how different host defenses modulate the rates and extent of virus evolution.

19.
Viruses ; 14(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891344

RESUMO

Advances in high-throughput sequencing methods have boosted the discovery of multistrain viral infections in diverse plant systems. This phenomenon appears to be pervasive for certain viral species. However, our knowledge of the transmission aspects leading to the establishment of such mixed infections is limited. Recently, we reported a mixed infection of a single strawberry plant with strawberry mottle virus (SMoV), strawberry crinkle virus (SCV) and strawberry virus 1 (StrV-1). While SCV and StrV-1 are represented by two and three molecular variants, respectively, SmoV has three different RNA1 and RNA2 segments. In this study, we focus on virus acquisition by individual adult aphids of the Aphis gossypii, Aphis forbesi and Chaetosiphon fragaefolii species. Single-aphid transmission trials are performed under experimental conditions. Both different viruses and individual virus strains show varying performances in single aphid acquisition. The obtained data suggests that numerous individual transmission events lead to the establishment of multistrain infections. These data will be important for the development of epidemiological models in plant virology.


Assuntos
Afídeos , Fragaria , Rhabdoviridae , Secoviridae , Viroses , Animais , Doenças das Plantas , Rhabdoviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...